栏目索引
相关内容
银行服务系统评价
摘要
针对目前银行服务系统中顾客等待时间、排队过长的问题,在考虑银行成本的情况下,对如何减短队列长,提高客服满意率有必要进行分析并建立更加有效的服务系统。
根据实际情况分析得出各个工作日不同时段服务不同参数值的分布,并结合排队理论知识,根据服务窗口开设个数、不同的排队形式、不同业务办理的时间建立相关联的数学模型,即计算出顾客的平均等待时间、平均等待队列长等主要指标来对不同服务系统的效率进行评比。
目前银行服务系统采用的是叫号或排队两形式,而在不考虑“飞号”情况下,叫号的服务效率同等于排成一大队对k个窗口的排队情形。所以根据排队形式的不同可以建立排成一大队对k个窗口的数学模型和排成k小队对k个窗口的数学模型构建出两种模型下开设不同窗口时的顾客平均等待时间、平均等待队列长的数学表达式,并对数学表达式进行编程以方便对实际数据的检验计算。
根据题目提供的实际数据和自行采集、假设数据进行分析、加权,将相应处理过的数据代入到数学表达式中计算得出实际数值。得出在排成一大队对k个窗口的模型下,开设4个窗口时服务效率最优。同样,对于排成k小队对k个窗口的模型下,开设4个窗口时服务效率最优。因此对比窗口数都为4个是的两种模型,比两者之间的顾客平均等待时间、平均等待队列长,得出排成一大队对k 个窗口的模型优于排成k小队对k个窗口的模型。
对于排成一大队对k个窗口的模型,可以选择排队或叫号。但根据统计个人因素出现“飞号”的概率和出现因排队太长而放弃加入队列的顾客数的概率,在结合相关文献提供的计算方法,计算得出叫号流失人数比排队时流失人数少,因此采用叫号系统。
模型的进一步优化,由于各个时间段的到顾客达率不同导致在各个时间段安排的最优窗口数也不相同,根据周一至周五和周六周日每日各时间段顾客的到达人数分布情况(周一至周五的顾客数一般多余周六周日顾客数),计算出了各个时间段安排的最优窗口数。但是考虑实际情况,银行不可能在每个时间段都对窗口数量进行调整,因此可将最优窗口数量相同或相近的相邻几个时间段保持其窗口不变,这样即不会造成频繁窗口的调动,又不会因有些时间段平均到达率差异很大造成窗口设置的浪费或排队的拥挤,有一定的合理性和可行性。通过计算结果,综合考虑,周一至周五开设6窗口,周六周日开设3个窗口。
最后,根据本文的数据考虑,提出了银行服务系统的最优模型,建议银行采用叫号系统,并在周一至周五开设6窗口,周六周日开设3个窗口。
目录
银行服务系统评价
1.问题重述 (3)
2.问题分析 (3)
3.模型假设 (4)
4.符号说明 (5)
5.模型建立 (6)
5.1排队理论系统说明 (6)
5.2基于一大队k个窗口的最优个窗口模型 (7)
5.3 k个小队k个窗口模型 (12)
5.4一个小队k个窗口与k个小队k个窗口模型的比较与分析 (13)
5.5 叫号系统 (15)
6.模型的改进 (16)
6.1模型的改进一 (16)
6.2模型的改进二 (17)
6.3模型的改进三 (18)
7.模型的优缺点分析 (21)
8.对银行服务系统的建议 (22)
9.参考文献 (22)
10.附录 (23)
1.问题重述
排队叫号机已经融入到了银行服务中,但是最近在广州出现的银行不使用排队机进行叫号却让人感觉非常奇怪,以至于有时排队长达10米。到底是排队的效率高还是叫号的效率高呢?这是一个值得众多商家和用户思考的一个问题,不要我们使用了排队系统,反而降低了效率,那就适得其反了。
银行方面对此回应是排队比叫号效率高可避免“飞号”现象,但来办业务的众多老人都表示长久站立有些吃不消。某银行支行人士告诉记者,银行采用“叫号”服务是想减少储户排队之苦,还可避免储户信息外泄等。但是,在实际操作中他们发现,不少市民在拿到号后去买菜、逛商场,造成“飞号”现象频繁发生,甚至引起其他客户不满和不必要的纠纷。对此我们有必要采集有效数据,从顾客满意率、银行成本、服务内容等出发,建立模型分析此网点应该如何设置服务窗口开放情况(可另行收集或合理假设需要的数据)。分析两种系统的服务效率(叫号服务系统、排队服务系统),你是否有更加合理的服务系统可以建议。
题目提供的数据:某银行大型网点约4个月(18个完整周)全部工作日各时段顾客的到达总人数和周内各天到达总人数分布(见表1、2所示):
注:该银行的营业时间为8:00am-6:00pm
表1 全部工作日各时间段顾客的到达人数分布
表2 全部工作日到达总人数周内分布
2.问题的分析
基于在银行服务系统中涉及到的客户满意率、银行成本、服务内容等直接联系到整个服务系统良好的运营。因此通过采集、查阅银行服务系统中的有关数据(如:客户单位时间内的平均到达率、客户单位时间内的平均服务率,客户等待极限时间等)进行分析研究,拟合出数据呈现的规律或概率;再根据银行采用的不同运营方式(如:单对排队多个窗口、多对排队多个窗口、叫号服务等)。可以拟合出在银行服务系统中的客户等待时间、客户队列长、客服业务办理时间等随机事件的规律或概率,而这些拟合出来的规律或概率对在考虑银行成本情况下,应该采用何种服务系统来提高客户满意率,服务效率提供了可行的参考。
2.1有用数据[1]的收集
(1)对银行的客户到达情况进行统计,统计了某银行大型网点月4个月全部工作日个时段顾客到达总人数和周内各天到达总人数分布(试题材料提供的数据);
(2)客户办理不同业务所需时间的统计并整合出客户办理业务所需时间的最大
概率的时间范围,算出每个窗口的平均服务率;
(3)对当地银行进行观察,并采样数据,可得出该营业厅的平均服务率,实际平均到达率的得出以便后面模型的实际检验。
2.2 数据规律的研究及排队理论
(1)运用数学软件MATLAB编程对收集到的数据进行分析,得出数据布规律(如:在排队系统中顾客的人流量一般服从泊松分布或爱尔朗分布;客户服务时间一般服从定长分布或负指数分布等);
(2)查阅相关文献,学习并掌握排队理论[1]知识。
2.3 拟合各分块的数学模型实现优化
(1)先对不同银行服务系统(排队或叫号)建立不同的数学模型得出影响系统服务好坏因素的数学表达式;
(2)比较影响系统服务好坏因素的数学表达式在相同量纲和同等条件下的同种因素的数据;
(3)对两种服务系统下的数学模型进行拟合,实现优化。
2.4 模型实际运用
(1)根据实际数据代入数学模型计算得出相应数值,这些数值则反映出服务系统的服务效率;
(2)对相应数值分析比较,比较出在何种服务系统中的服务效率高;
2.5 模型的进一步分析
(1)根据已建立的模型和检验数据,并结合实际情况,假设更多的实际因素代入到模型中去,实现模型的进一步优化。
3.模型假设
1、顾客中没有插队现象的发生。
2、顾客一旦进入队伍中就不会中途离开。
3、窗口进行服务时,排除因为意外情况的发生而影响到的服务时间。
4、叫号系统中一旦顾客发生“飞号”现象,则不予给该顾客提前服务,得再
取号等候。
5、各窗口服务时间基本一致,不考虑各窗口工作人员自身原因引起的服的改变。
6、窗口数量为考虑银行成本的主要因素。
7、本模型只考虑工作日银行的人流数量,排除特别节假日时期的情况。
8、周一至周五每日的人流量可以看同等分布。
9、窗口服务时间服从均匀分布。
4.符号说明
L:表示系统中的顾客数,包括排队等候的和正在接受服务的所顾客(称
S
为平均队列长队);
L:表示系统中排队等候的顾客数(称为平均队列长);
q
T:表示顾客在系统中的平均逗留时间(包括等待时间和服务时间);
S
T:表示顾客在系统中的平均等待时间(平均排队等待时间);
q